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ABSTRACT

Constitutive relations are developed for modeling the mechanical response of
polymeric materials exposed to high temperatures. These relations are developed
from the expression of the first principle of thermodynamics given by Gibbs. These
relations are completely general and make no presumptions about the physical size
and shape of the material's porosity. As such, these relations are applicable over a
wide range of temperatures. Expressions are given for the strain and the entropy of
the polymeric composite due to the accumulation of chemical species which result
from chemical changes in the resin and for the chemical potentials of each of these
chemical species. In addition, the linear relations for porous media can be shown to
be a special case of these constitutive relations.

INTRODUCTION

The structural response of polymeric composites subjected to high
temperatures is primarily dictated by the chemical changes which occur in the resin
constituent. The specific nature of these chemical changes depend upon
temperature; resin cure advancement occurs at temperatures below 400°C and
molecular depolymerization occurs at higher temperatures. Throughout all
temperature ranges, these chemical changes are accompanied by the formation of
byproducts and it is the accumulation of these byproducts within the resin, fibers or
filler which governs the structural response of these materials. Water is the primary
byproduct of the resin curing stage whereas a variety of other byproducts are
formed along with water as a result of depolymerization (Sykes, 1967).

To illustrate the effect of chemical changes on the structural response, the
results from a series of high-temperature tests conducted on carbon phenolicl
specimens are shown in Figures 1 and 2 (Hubbert, 1989). In these tests, cylindrical
specimens which were 1.0 inches long and 0.25 inches in diameter were heated
uniformily and the strain along the cylinder axis was measured as a function of

1 Carbon phenolic is a laminated, thermosetting polymeric composite made from carbon
fabric and is used as thermal insulation in many industries.
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Figure 1. Composite strain as a function of temperature for two

different heating rates (Hubbert, 1989).

temperature. The results shown in Figures 1 and 2 are from a particular set of tests
where the specimens were fabricated such that the direction which is perpendicular
to the fiber plane was aligned along the cylinder axis. Therefore, the results shown
are the strain in the material's transverse direction.

These results indicate a highly nonlinear expansion behavior which is due to
irreversible processes which occur as the material is heated. These irreversible
processes include changes in the chemical state of the material and chemical species
migration. A rise in strain with temperature indicates an accumulation of these
chemical reaction byproducts in the material whereas a drop in strain indicates a
release of energy due to the diffusion of these byproducts.

In Figure 1, the results are shown for specimens heated at two different
heating rates to illustrate the effect of heating rate on the expansion response. If the
material is heated at a high rate there is less time for the chemical reaction
byproducts to diffuse out of the specimens and this in turn produces a higher

expansion.

Figure 2 illustrates the effect of moisture content on the expansion response.
The expansion results for specimens which were preconditioned in three different
environments are compared. Conditioning environment A was 40% relative humidity
and 41°C, conditioning environment B was 95% relative humidity and 35°C and
conditioning environment C was vacuum dried to a maximum temperature of 100°C to
drive out the adsorbed water. As one would expect, the amount of water in the
specimens has a significant effect on the expansion. The magnitude of the first peak
in the expansion curve which occurs at approximately 300°C is significantly affected
by the moisture content of the specimens prior to testing.
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Figure 2. Composite strain as a function of temperature for three
different conditioning environments {Hubbert, 1989).

Although Sykes characterized these chemical changes over twenty-five years
ago, it has been only recently that analysis methods have become sophisticated
enough to address this problem in a rigorous mathematical manner. One of the
earliest approaches for modeling these phenomena in polymeric composites was
developed by Henderson and Wiecek (1987). Their approach was to treat the
byproducts liberated by the chemical reactions as a fluid and to assume that the
species migrate through the material like a fluid flows through a porous media. They
also assumed that the material remained rigid or incapable of deformation so that the
fluid was assumed to flow through a rigid network of pores. Using Darcy's law to
model the fluid flow and a mass conservation equation, they determined the fluid
pressure in the pores as a function of space and time. This approach was a direct
extension of the work of Kung (1972) and Kansa, Perlee and Chaiken (1977) who
developed a similar numerical model for wood pyrolysis based upon a similar set of
assumptions. These assumptions have a realistic basis in the study of wood pyrolysis
since the porosities of wood are quite high (Kansa, Perlee and Chaiken, 1977)
particularly after charring has occurred.

More recently, Sullivan and Salamon (1992a) have improved upon this basic
approach by incorporating the constitutive relations originally developed by Biot
(1941) for poroelastic media into a finite element formulation. This improvement
provides the ability to determine the expansion of the material due to internal pore
pressure. The results of this method can then be compared directly with the
measured response of the material shown in Figures 1 and 2 (Sullivan and Salamon,
1992b).

Within these previous analytical methods, the underlying assumptions are
that 1) the byproducts from the chemical changes collectively act like a fluid, 2)
there exists a well-defined boundary between the fluid and solid constituents where
mechanical equilibrium is maintained and 3) the forces which exist between the
solid and fluid constituents are purely of a mechanical nature. However, these
assumptions may not be consistent with the physical conditions which are present in
polymeric composites as they are heated to high temperatures. For instance, certain
carbon fibers used in polymeric composites are known to be hydrophilic (Stokes,
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1991) due to activated carbon sites on their surface. The chemical forces between the
carbon fibers and water molecules liberated from the resin may become significant
in influencing the mechanical behavior of the material. This phenomena could not
possibly be accounted for using poroelasticity theory due to the third assumption
above.

Another discrepancy which exists between the physical conditions in the
polymeric composite and the underlying assumptions of poroelastic media involves
the definiton of pore volume. The physical size and shape of the pore volume in
these materials changes with temperature along with the aforementioned chemical
changes. For example, prior to 400°C, the pore volumes are undetectable with a
scanning electron microscope at magnifications of 1000x and lower and the pore
diameters are smaller than 1 pm (Brown and Clemons, 1992). We could more
accurately describe the material's porosity in this temperature range as a free molar
valume rather than a physically measurable porosity. The constitutive relations for
porous media do not seem relevant for modeling the material response at low and
intermediate (100-400°C) temperatures, since if only a few molecules occupy each
free molar volume, the concept of a well-defined boundary between the solid and
fluid constituents becomes obscured

As the temperature is increased, the porosity increases with the onset of
depolymerization and the formation of cracks. Using helium pycnometry, Brown and
Clemons (1992) measured porosities as high as 30% in carbon phenolic specimens
heated to 1000°C. The applicability of poroelasticity to carbon phenolic at these
higher temperatures is apparent since the microstructure begins to resemble that of
granular soils and porous rock and since these are the specific problems which Biot
sought to address in developing his original relations.

There are however other constitutive relations for species migration in solids
which are not restricted to a specific description of the pore volume. These
constitutive relations use the thermodynamic variable known as chemical potential
instead of pore pressure as the variable responsible for diffusion phenomena. Gurtin
(1977) recognized the equivalence of pore pressure and chemical potential as flow
potentials and he appreciated the fact that the chemical potential is the more
appropriate of the two variables for problems where the diffusion occurs at a
molecular level. We also note the recent work of Weitsman (1990) where chemical
potential is used to model moisture diffusion in epoxy resin composites at relatively
low temperatures.

Furthermore, the chemical potential is more general than pore pressure. We
note the recent work of Gu, Lai and Mow (1992) where the chemical potential is used
to model ion diffusion in biological tissues. Their constitutive relations highlight the
general nature of the chemical potential as a flow potential since in their relations
the chemical potential for water is influenced by both mechanical and chemical
phenomena.

The objective of this present study is to establish a unified set of constitutive
relations for modeling the structural response of high-temperature, polymeric
composites due to the accumulation and subsequent diffusion of chemical species
which are liberated from the resin. In the next section, we develop these relations
from Gibbs (1906) expression of the first principle of thermodynamics for an open
system of variable composition. These relations are completely general and make no
presumptions about the physical size and nature of the materials porosity. Also, the
forces which are responsible for the diffusion phenomena may be chemical or
mechanical in nature. Therefore, these relations are applicable for the analysis of
carbon phenolic composites over a wide range of temperatures. These relations
express the chemical potentials for each chemical specie which is liberated as well as
the composite stress and strain due to the presence of these liberated byproducts.
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In the following section, the constitutive relations for poroelastic media are
shown to be encompassed by these general constitutive relations since Biot's
relations can be derived from thermodynamic principles if certain restrictions are
imposed upon the homogeneous mass.

THERMODYNAMICS OF AN OPEN SYSTEM OF VARIABLE COMPOSITION
The C itutive Relati

An open system is by definition one which is allowed to exchange heat and
mass with its surroundings. We consider a homogeneous mass of some arbitrary
material and allow heat and mass to cross its boundaries. In the most general sense,
this mass may be a solid, a liquid or a vapor. It is composed of the substances
S, 85, 83,... 8, where the proportions of these substances in the mass may vary as
heat and masses are added during some thermodynamic process. The term
homogenous means that the temperature, pressure and chemical composition of the
mass are uniform throughout. In other words, no gradients exist in the mass which
would cause an irreversible process such as heat or chemical species flow within the
boundaries of our mass. As such, we are interested in only equilibrium states and we
seek to define the relations between the state variables as the system moves between
equilibrium states during thermodynamic processes.

The expression of the first principle given by Gibbs (1906) defines the
variation of the internal energy U of this open system as a function of the other state
variables. This expression is written as

dU=tdn-Pdv+u,dn; +H,dny+... .+, dn, (1)

where t, P, 11 and v are the absolute temperature, the hydrostatic pressure, the
entropy and the volume of this mass, respectively. Furthermore, n,, lo, Ha, ... Hp
denote the chemical potential of the substances S;,S,, S3,...S,, respectively and
ny, Ny, N3, ... 0, denote the number of moles of these n substances in the homogeneous
mass. The first term on the right hand side of equation (1) represents the heat added
to the mass and the second term represents the work done by the mass during the
thermodynamic process. The remaining terms represent the energy added to the
system due to the addition of each chemical component.

The state variables of the homogeneous mass are either intensive or extensive
quantities. An extensive variable is one whose value depends upon the quantity of
material in the thermodynamic system such as volume, entropy or internal energy.
An intensive variable is one which is independent of the quantity of material in the
system. The intensive variables in equation (1) are pressure, temperature and the
chemical potentials. Notice that each term in equation (1) has the form of an
intensive variable multiplying the differential of an extensive variable. We further
note that the variables t and 1) are conjugate to one another since they define the
thermal state of the homogeneous mass. Likewise, the conjugate variable pairs (P, v)
and (y,, n,) define the mechanical state of the homogeneous mass and the Gibbs
energy of the kth specie in the homogeneous mass, respectively. Finally, we note
that each conjugate pair contains an intensive variable and an extensive variable.

In a homogenous mass with n chemical components only n+2 of the state
variables are independent. The other state variables are related to the independent
variables through certain constraint equations. It is therefore necessary to quantify
only n+2 of the state variables in order to completely define the thermodynamic state
of this homogeneous mass, provided that an appropriate choice has been made for
the independent variables. An appropriate choice of independent variables would be
to choose one variable from each of the n+2 conjugate pairs. For example, we could
choose one variable for each chemical component (either p, or n;), one describing
the thermal state (either t or 1) and one describing the mechanical state (either P or
V).
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Equation (1) is valid for bodies which are capable of only one mechanical
degree of freedom such as inviscid or perfect fluids. However, our problem of
interest involves solid bodies where nonhydrostatic stress states are possible. Since,
in this case, there are six mechanical degrees of freedom, the number of independent
variables is now n+7. The mechanical state variables P and v must be replaced with
the stress tensor G;; and strain tensor g;;, respectively and the work term in equation
(1) must be replaced with a series of terms where each one represents the work
contributed by each of the six independent stress components acting through their
associated strain increments. If the stress and strain tensors are defined using a
cartesian coordinate system consisting of an x, y and z axis, then equation (1) is
written as

dU =tdn + 0, d&;y +Oyy dEyy+. .. + Oy Ay, + Hydny + o dny +. .. + Uy dny. (2)

The sign of the work terms in equation (2) is opposite to that in equation (1) because
in equation (1) the pressure was considered positive if it caused a reduction in the
volume of the homogeneous mass whereas in equation (2) the stress component is
considered positive if it causes an extension of the homogeneous mass.

We choose the variables 6, t and ny as the independent variables and express
the remaining variables as functions of these such that

U=U(o;; t.ny) £ = &; (0 . my) .
3
n=n (oij’ L nk) M =My (Gij’ t, nk).

Using the chain rule of differentiation, the expressions for the differential
increments of the state variables g;;, 1] and ji; are written as

de;; = i i {———aeij } do + {ﬂ} de+ ﬁ {952} dng
r=ls=1 30,, L0, 6 ot G My, L=1 anL L, oy i
on an on
m-% 3 {__} do+ {__} @+ 3 {_} dn 4)
r=1s=1 ao',s t-nL’cij at Gﬁ,nx_ L=1 anl‘ Lcij'nL -

_ oy Oy O
duk‘,gl,=1{aom}mbcﬂdﬁn+{at uﬁ,n,_dnl'g’ 30, t,c-u-.ﬂ;_dnL

where the stress components Gy, Oyy, €tc. are denoted by 6,, 69, etc. The subscript

n_ denotes differentiation at constant composition and the subscript fi, denotes
differentiation with the number of moles of all components held constant except the
one in the denominator of the differential. The subscript 6;; denotes differentiation

with all stress components held constant and the subscript Oij denotes differentiation

with all stress components held constant except the one in the denominator of the
differential.

The constitutive relations given by equations (4) express the differential
increments in strain, entropy and chemical potential for each specie during some
thermodynamic process in terms of the differential increments of stress,
temperature and the number of moles of each specie in the homgeneous mass. These
relations are completely general since while deriving them we have made no
assumptions about the materials pore structure and no assumptions about the
physical state of the chemical species which are added to the mass. The species which
enter the homogeneous mass may be in a liquid or a vapor state or these species may
enter the homogeneous mass one molecule at a time. The fact that these relations are
of a general nature is a direct result of the definition of the chemical potential given
by Gibbs which is itself given in very general terms.
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In equations (4), the coefficient {3€;/00,,}, n,a, i the fourth-order compliance
.8

tensor and {Baijlat)o is the second-order tensor of thermal expansion coefficients.

ijp ML

Also, since the change in volume of the homogeneous mass during some
thermodynamic process is dv =dg,, +d€,, + d€,,, then the partial molar volume for

the kth specie is

o
ank Loy fiy ony L, G iy ank LGy fig ank L0y, fiy

The coefficient {an/ank)L o iy is the partial molar entropy of the kth specie.

Finally, we note certain conditions on the coefficients of the constitutive
relations given in equations (4) which result from the equality of mixed second
partial derivatives of U. The equality of mixed second partial derivatives results from
the fact that U is a state function and its differential is an exact differential
(Wangsness, 1963). The equality of mixed second partial derivatives of U taken with
respect to the independent variables yields

9°U__ % %U__ _d%u oW __ W 6)
Btgcij a aO’ijat al’lk 30ij - BO'ij 3nk 5nk ot ot 3ﬁk

The negative sign in the last two expressions in equation (6) are a result of taking
partial derivatives of U with respect to an intensive and an extensive variable. Using
equation (2), equations (6) become

{i_} {_@1} {L} {ai}
ot G L aoij tng, 8 any Ojjr b fiy acij L. 6

2.
ank Uij.l.ﬂk at g, Gj

(7

The Chemical P ial

It follows from equation (1) that the chemical potential of the kth specie in the

homogeneous mass is
Hy = {STU} (8)
kJn,v.fy

where again the subscripts on the bracket indicate differentiation with those
variables held constant and the subscript fiy denotes differentiation with the number
of moles of all components held constant except the one in the denominator of the
differential. Furthermore, since the Helmholtz energy function vy is related to the
internal energy by w=U-tn, we can rewrite equation (2) as

dy =—-1dt + G\, d€;, + Oy dEy+. . . + Oy dEy + dny + Updny +. .. +pdn,  (9)

and therefore the chemical potential can also be expressed as

)
={+ 10
My {ank ety (10)

where the subscript g; denotes differentiation with all strain components held
constant.
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Equation (10) is the mathematical representation of the definition given by
Gibbs which states that the chemical potential of any substance in a homogeneous
mass is equal to the amount of work required to bring a unit mass of that substance
from a state in which its Helmholtz energy is zero into equilibrium with the
homogeneous mass in a process where the temperature and volume of the
homogeneous mass remain constant?. We note that this definition of chemical
potential given by Gibbs does not specify the source of the work. This work may be
performed by mechanical as well as chemical forces.

CONSTITUTIVE RELATIONS FOR POROUS MEDIA
Biot's Relati for sot} | P Medi

Biot (1941) established his constitutive relations for porous media under the
pretense that the material is comprised of pores, the fluid constituent must occupy
these pores and the solid material is linear elastic. Biot's constitutive relations have
been expressed in a number of different forms but perhaps the most useful form was
given by Biot and Willis (1957). For materials of general anisotropy under isothermal

conditions, these relations are3

G = Ciga €10 - %; Ps
{11)
= 1 ’
C =055+ 3 Pt

where Ojj is the total (or overall) stress tensor, €;; is the elastic strain tensor, { is the
increment in fluid volume and py is the fluid pressure in the pores.

The coefficient Cyy, is the fourth-order tensor of elastic constants for the
porous solid skeleton. This is sometimes referred to as the drained stiffness tensor
since it represents the stiffness due solely to the porous material4. The coefficient aj;
is a second-order tensor of coefficients which represent the fraction of the pore
pressure which contribute to the total stress tensor. These coefficients are a function
of the relative stiffness of the porous solid skeleton and the solid material without
pores. The coefficient M is a scalar quantity and relates the increments in fluid
volume to the pore pressure increments. This coefficient is a function of the
porosity, the fluid bulk modulus, the bulk modulus of the solid material and the bulk
modulus of the material with pores.

Solving equations (11) for e and p;, we obtain

eij=S;;k|6k_l+S;’mak]MC
(12)
M
ij g Siga M)

u

Pr=-04Sju Moy + T

where Sy is the fourth-order tensor of undrained compliances and S;3 is the
fourth-order tensor of drained compliances.

2 Note that for isothermal processes the change in the Helmholtz function for the
homogeneous mass is equal to the amount of work done on the homogeneous mass.

3 Here and in the following equations, we use the standard practice in tensor notation where
repeated indices imply summation and free indices do not.

4 The undrained stiffness tensor C%,, on the other hand, represents the stiffness of the

porous material and the additional stiffness from the bulk modulus of the fluid.
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For isotropic porous materials, the constitutive coefficients may be determined
by four independent tests. These are the unjacketed compressibiltiy test, the jacketed
compressibility test, a test to measure the shear modulus and a test to measure the
unjacketed coefficient of fluid content. These tests were described in detail by Biot
and Willis (1957).

The T¢ ! ic Basis of the Constitutive Relations for Poroelastici

We can show that Biot's constitutive relations for porous media are
encompassed by the general set of relations developed in the previous section. We
can derive the general form of the relations given in equations (12) from
thermodynamic principles if we consider a homogeneous mass subject to the
following restrictions:

1) The homogeneous mass under consideration is a porous solid body where the
pores are filled with a fluid.

2) The substance which is added to the homogeneous mass must reside in the
pores of the homogeneous mass.

3) The forces which exist between the fluid and solid constituents are purely
mechanical.

4) All thermodynamic processes occur under isothermal conditions.
The Helmholtz energy for this specific set of conditions was given by Biot (1941) as>
dV=0ij deij +pde' (13)

Since we are interested in only isothermal processes, the conjugate thermal
variables t and 1 are neglected in the expression for the Helmholtz energy given in
equation (13).

Following in a similar manner as before, we choose the state variables 6;;and {

as the independent variables and we can therefore express the differential
increments in the variables e; and p; as

de..= _afl_" do,, + ia_c..‘l dc
i aoklg 4T\ ag o;

dps= {%}cdc Tha {%pff}cﬁdc .

(14)

Equations (12) and (14) are an equivalent set of relations since equations (12)
are linear and since both equations (12) and (14) express the strain and pore
pressure in terms of the total stress and fluid volume. We note that the derivation of
equations (14) was possible only by replacing the conjugate variables p, and n, with
the variables p; and {, respectively in the expression for the Helmholtz energy. This
substitution is legitimate since pore pressure and chemical potential are both
intensive variables describing the energy of a unit quantity of some substance and
since the volume increment and the number of moles are both extensive variables

5 For linear elastic materials under isothermal conditions, the elastic strain is equal to the
total strain, i. €. ¢; =§&;
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describing the amount of that substance. Furthermore, the terms pudn and p;d{
describe an increment in energy associated with an incremental quantity of some
substance added during some thermodynamic process. We note once again, however,
that pore pressure is a quantity which identifies the mechanical force between the
fluid and solid constituents whereas chemical potential is more general since it can
involve both chemical as well as mechanical forces due to its definition from Gibbs.

Due to the equality of mixed second partial derivatives, the coefficients in the
relations of equations (14) are once again subject to the restriction that

5| __ [
{BC}%— {a"ij}g’ 1

a condition which is satisfied in the relations of equations (12)6. Also, since we have
replaced the variable n, with the variable { for this specialized homgeneous mass,
then it follows that the counterpart to the partial molar volume of the fluid for this

special case is
AR ?:v_v} {iau_}
{aC}oﬁ { aC }cij+{ a‘: Oij+ at-' G5 o

which, by virtue of equation (12), can be expressed in terms of the poroelasticity
coefficients as

{ﬂ} = S\lllij aij M+ ngj aij M+ Sg3ij aij M. (17)
ac oij

Finally, we can derive an expression for the chemical potential of the fluid in
the porous material for this specific case. Remember that the definition of the
chemical potential for some substance in the homogeneous mass was the amount of
work required to bring a unit mass of that substance into equilibrium with the
homogeneous mass. Under isothermal conditions and within the restrictions of this
specialized homogeneous mass, the fluid substance has only one degree of freedom.
This lone independent variable is either the fluid pressure or the fluid volume. In
order to bring the fluid substance into equilibrium with the fluid-filled porous
material, work must be done on the fluid. This work is required to bring the pressure
of the fluid from a pressure where the Helmholtz energy of the fluid is zero to the
pressure of the fluid in the homogeneous mass. Since there is only one independent
variable, the increment in the chemical potential during this process can be
expressed as

dug = (%:}l dpe (18)

where we have chosen the fluid pressure as the independent variable. We recognize
the term in brackets as the partial molar volume of the fluid (Guggenheim, 1933)
which, for a condensed phase comprised of a single component, is 1/p; where p; is
the fluid density. Therefore, equation (18) is written

dps
dpg=—=. (19)
Ps
6 This condition is satisfied since the undrained compliance tensor is symmetric, i.e.

Sy = S
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Equation (19) is the same as that given by Biot (1972) although Biot arrived at
this expression in a different manner. Biot used the concept of a hypothetical
reservoir and a strict interpretation of Gibbs definition of the chemical potential. He
determined the expressions for the work required to pump a unit mass of the fluid out
of the reservoir, compress this fluid to the fluid pressure in the porous material and
inject the fluid into the porous material. Integrating his resulting expression by
parts, he arrived at equation (19). On the other hand, we have arrived at equation
(19) in a more direct manner using thermodynamic identities.

Biot's linear constitutive relations for porous media have been derived from
thermodynamic principles and we have thus established the thermodynamic basis
for Biot's constitutive relations. Biot realized the role of his relations as a special case
of the general set of relations derived from thermodynamic principles (Biot, 1972).
Perhaps his motivation for developing his constitutive relations was the fact that the
pore pressure is a more tangible quantity than chemical potential since pore
pressure can be measured directly. Moreover, the main emphasis behind Biot's
efforts was to address problems in the geotechnical field where, in general, these
problems involve only mechanical forces between the constituents and the pore
volumes tend to be on a larger scale than free molar volumes.

CONCLUSIONS

A set of constitutive relations have been developed for modeling the structural
response of polymeric composites subjected to high temperatures. These relations
were developed from the first principle of thermodynamics of an open system of
variable composition. These relations do not use pore pressure as the flow potential
but instead rely on the variable known as chemical potential. These relations are
more general since chemical potential is more general than pore pressure and since
these relations were developed without being restricted to a specific description of
the pore volume. As a result, these relations are applicable over a wide range of
temperatures.

The linear constitutive relations for porous media can be viewed as a special
case of these relations since the general form of the isothermal relations given by
Biot can be derived from thermodynamic principles if the homogeneous mass is
restricted to certain conditions. In a future effort, the nonisothermal relations for
porous media should also be derived in this manner. This will lead to expressions for
the entropy of mixing and the entropy of pressure change for the porous media in
terms of Biot’s constitutive coefficients.

In conclusion, it should be noted that these results represent merely the first
step in a long and difficult process which will ultimately lead to an accurate and
viable analysis method for high-temperature composites. Future tasks will include
determination of the constitutive coefficients and verification of this new approach.
Determination of the coefficients will involve an extensive effort since these
coefficients must be determined through a series of tests conducted on polymeric
composite specimens at a number of temperatures and under a variety of test
conditions.
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